The SiF₅⁻ Ion and Evidence for the Existence of GeF₅⁻

By H. C. CLARK* and K. R. DIXON

(Department of Chemistry, University of Western Ontario, London, Ontario, Canada)

WE have recently mentioned¹ the stabilization of the SiF_5^- ion by the large cation trans- $(Et_3P)_2^ PtCl(CO)^+$. It is now clear that this anion can easily be obtained, and it is most surprising that it has not been obtained sooner. Reaction of a 1:1 molar mixture of Ph₄AsCl and SiO₂ in aqueous methanolic HF results in the formation of tetraphenylarsonium pentafluorosilicate. The compound is characterized by elemental analyses (totalling 100% composition) and by its infrared spectrum (4000-300 cm.⁻¹) which in addition to bands due to the Ph₄As⁺ cation, has absorptions at 925w, 915vw, 875b, vs, 790 vs, 770 vs, and 445s cm.⁻¹. The 480 cm.^{-1} region is obscured by cation absorptions in the arsonium salt but the spectra of Et_4NSiF_5 , obtained in an impure form by a similar method, and of trans-(Et₃P)₂PtCl(CO)SiF₅¹ indicate that the SiF₅- ion has another absorption at 480 cm.⁻¹. This spectrum is quite unlike that of the more usual SiF_6^{2-} ion which has strong absorptions at about 740 and 480 cm.⁻¹. The exact frequencies of these SiF_{6}^{2-} absorptions are dependent on the cation and they are sometimes split by the symmetry effects² but such effects are too small to

account for the spectrum attributed above to SiF_5^{-} .

A 10^{-3} M-solution of Ph₄AsSiF₅ in nitromethane at 25° has a conductivity of 82 ohms⁻¹ cm.² which may be compared with 90 ohms⁻¹ cm.² for Ph₄AsBF₄ under the same conditions.

A similar reaction using GeO_2 instead of SiO_2 results in formation of a compound for which elemental analyses (totalling 100% composition) give the atomic ratio Ge: F = 1.04:5.00. The infrared spectrum (4000-300 cm.⁻¹) of this material has, in addition to bands due to the Ph₄As⁺ cation, absorptions at 650s, 635s, 575s, 560s, and 325s. This spectrum is similar to that attributed to SiF₅⁻ and is quite unlike the spectrum² of GeF₆²⁻ which has strong absorptions at about 600 and 350 cm.⁻¹. The evidence indicates that GeF₅⁻ may be present.

The results do not unambiguously exclude the possibility of polymeric, fluorine-bridged species in the solid state but a single-crystal X-ray study of Ph_4AsSiF_5 at present in progress under the direction of Dr. J. A. Ibers at Northwestern University, Illinois, should resolve this point.

(Received, June 5th, 1967; Com. 567.)

¹ H. C. Clark, P. W. R. Corfield, K. R. Dixon, and James A. Ibers, J. Amer. Chem. Soc., in the press.

² D. H. Brown, K. R. Dixon, C. M. Livingston, R. H. Nuttall, and D. W. A. Sharp, J. Chem. Soc. (A), 1967, 100.